Geometry

6.5 Indirect Proof and Inequalities in One Triangle

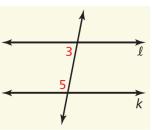
Indirect Reasoning

- You are taking a multiple-choice test.
- You don't know the correct answer.
- You eliminate the answers you know are incorrect.
- The answer that is left is the correct answer.

You can use the same type of logic to prove geometric things.

Indirect Proof

- Proving things by making an ______ and showing that the ______ leads to a ______.
- Essentially it is proof by ______ all the other _____.


Steps for writing indirect proofs

- 1. ______ what you are trying to ______. Temporarily, assume the ______ is _____ and that the ______ is _____.
- 2. Show that this leads to a ______ of the ______ or some other _____.
- 3. Point out that the _____ must be _____, so the _____ must be _____.

Suppose you wanted to prove the statement "If $x + y \neq 14$ and y = 5, then $x \neq 9$." What temporary assumption could you make to prove the conclusion indirectly?

How does that assumption lead to a contradiction?

Write an indirect proof that if two lines are *not* parallel, then consecutive interior angles are *not* supplementary. **Given** Line ℓ is not parallel to line k.

Prove $\angle 3$ and $\angle 5$ are not supplementary.

Geometry 6.5		Name:						
Big Angle O	Opposite Big Side Theorem							
	of a triangle is				the			
side is than the angle opposite the shorter side.								
Big Side Op	posite Big Angle Theorem							
If one	of a triangle is	than another	, then the	opposite the	angle is			
	than the side opposite the							
List the sides	in order from shortest to lor	igest.						

R 29° 30° T

Triangle Inequality Theorem								
The of two	_ of a triangle is	than the	of the	side.				
AB + BC > AC; AB + AC > BC; BC + AC > AB								

A triangle has one side of 11 inches and another of 15 inches. Describe the possible lengths of the third side.

Assignment: 328 #2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 40, 47, 49, 52, 53, 55 = 20 total